EAN: 9783319238708
Bilder-Quelle: shopping24.de – Sport
This book deals with an information-driven approach to plan materials discovery and design iterative learning. The authors present contrasting but complementary approaches such as those based on high throughput calculations combinatorial experiments or data driven discovery together with machine-learning methods. Similarly statistical methods successfully applied in other fields such as biosciences are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge a database of descriptors (the genes) a surrogate or statistical model developed to predict a given property with uncertainties performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases computation and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques generating vast arrays of data without a clear way of linkage to models the full value of data driven discovery cannot be realized. Hence along with experimental theoretical and computational materials science we need to add a ¿fourth leg¿¿ to our toolkit to make the ¿Materials Genome'' a reality the science of Materials Informatics.
Produktinformationen zuletzt aktualisiert am
05.11.2025 um 21:05 Uhr
05.11.2025 um 21:05 Uhr
Hersteller
-
EAN
9783319238708
MPN
-
ASIN
3319238701
Produktgruppe
-
Produktzustand:
Verfügbarkeit:
Versandkosten:
Sonderpreis:

Sie sind Shopbetreiber? Listen Sie ganz einfach Ihre Produkte hier bei uns im Portal >>>
Letzte EAN Aktualisierungen:
9783030061210 - Quantum Physics and Geometry Kartoniert (TB)...9783319772844 - SpringerBriefs in Psychology Contextual Cognitio...
9783319500720 - SpringerBriefs in Water Science and Technology E...
9783642115295 - Information Security and Digital Forensics Kartoni...
9783642105081 - Future Generation Information Technology Kartonier...
9783837662108 - Science Studies Kalibrierung der Wissenschaft Ka...
9783030010683 - Advances in Intelligent Systems and Computing III ...
9783030008390 - Computer and Information Sciences Kartoniert (TB)...
9783319285597 - Information Systems Architecture and Technology Pr...
9780241381434 - Super Simple Physics...
9783030693022 - Technology Meets Flowers - Eric van Heck Kartonier...
9783031004377 - Synthesis Lectures on Artificial Intelligence and ...
kürzlich hinzugefügt:
9783319285535 - Information Systems Architecture and Technology Pr...9783319530758 - Information Technology for Management New Ideas an...
9781119433385 - Social Engineering - Christopher Hadnagy Kartonier...
9783030138349 - Processing and Analysis of Biomedical Information ...
9780241446553 - Knowledge Encyclopedia Earth! Gebunden...
9783110206074 - Culture Society and Cognition - David B Kronenfeld...
9781260452778 - Business Data Science - Matt Taddy Gebunden...
9783030000295 - DNA Computing and Molecular Programming Kartoniert...
9781409350156 - The Science Book Gebunden...
9781493940271 - Analytical Techniques in the Pharmaceutical Scienc...
9783031153730 - SpringerBriefs in Applied Sciences and Technology ...
9783319207018 - Humanities Data in R - Taylor Arnold Lauren Tilton...